Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Stat Methods Med Res ; : 9622802221139233, 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2233158

ABSTRACT

We consider the setting of an aggregate data meta-analysis of a continuous outcome of interest. When the distribution of the outcome is skewed, it is often the case that some primary studies report the sample mean and standard deviation of the outcome and other studies report the sample median along with the first and third quartiles and/or minimum and maximum values. To perform meta-analysis in this context, a number of approaches have recently been developed to impute the sample mean and standard deviation from studies reporting medians. Then, standard meta-analytic approaches with inverse-variance weighting are applied based on the (imputed) study-specific sample means and standard deviations. In this article, we illustrate how this common practice can severely underestimate the within-study standard errors, which results in poor coverage for the pooled mean in common effect meta-analyses and overestimation of between-study heterogeneity in random effects meta-analyses. We propose a straightforward bootstrap approach to estimate the standard errors of the imputed sample means. Our simulation study illustrates how the proposed approach can improve the estimation of the within-study standard errors and consequently improve coverage for the pooled mean in common effect meta-analyses and estimation of between-study heterogeneity in random effects meta-analyses. Moreover, we apply the proposed approach in a meta-analysis to identify risk factors of a severe course of COVID-19.

2.
PLoS Med ; 19(5): e1004011, 2022 05.
Article in English | MEDLINE | ID: covidwho-1865332

ABSTRACT

BACKGROUND: Comprehensive information about the accuracy of antigen rapid diagnostic tests (Ag-RDTs) for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is essential to guide public health decision makers in choosing the best tests and testing policies. In August 2021, we published a systematic review and meta-analysis about the accuracy of Ag-RDTs. We now update this work and analyze the factors influencing test sensitivity in further detail. METHODS AND FINDINGS: We registered the review on PROSPERO (registration number: CRD42020225140). We systematically searched preprint and peer-reviewed databases for publications evaluating the accuracy of Ag-RDTs for SARS-CoV-2 until August 31, 2021. Descriptive analyses of all studies were performed, and when more than 4 studies were available, a random-effects meta-analysis was used to estimate pooled sensitivity and specificity with reverse transcription polymerase chain reaction (RT-PCR) testing as a reference. To evaluate factors influencing test sensitivity, we performed 3 different analyses using multivariable mixed-effects meta-regression models. We included 194 studies with 221,878 Ag-RDTs performed. Overall, the pooled estimates of Ag-RDT sensitivity and specificity were 72.0% (95% confidence interval [CI] 69.8 to 74.2) and 98.9% (95% CI 98.6 to 99.1). When manufacturer instructions were followed, sensitivity increased to 76.3% (95% CI 73.7 to 78.7). Sensitivity was markedly better on samples with lower RT-PCR cycle threshold (Ct) values (97.9% [95% CI 96.9 to 98.9] and 90.6% [95% CI 88.3 to 93.0] for Ct-values <20 and <25, compared to 54.4% [95% CI 47.3 to 61.5] and 18.7% [95% CI 13.9 to 23.4] for Ct-values ≥25 and ≥30) and was estimated to increase by 2.9 percentage points (95% CI 1.7 to 4.0) for every unit decrease in mean Ct-value when adjusting for testing procedure and patients' symptom status. Concordantly, we found the mean Ct-value to be lower for true positive (22.2 [95% CI 21.5 to 22.8]) compared to false negative (30.4 [95% CI 29.7 to 31.1]) results. Testing in the first week from symptom onset resulted in substantially higher sensitivity (81.9% [95% CI 77.7 to 85.5]) compared to testing after 1 week (51.8%, 95% CI 41.5 to 61.9). Similarly, sensitivity was higher in symptomatic (76.2% [95% CI 73.3 to 78.9]) compared to asymptomatic (56.8% [95% CI 50.9 to 62.4]) persons. However, both effects were mainly driven by the Ct-value of the sample. With regards to sample type, highest sensitivity was found for nasopharyngeal (NP) and combined NP/oropharyngeal samples (70.8% [95% CI 68.3 to 73.2]), as well as in anterior nasal/mid-turbinate samples (77.3% [95% CI 73.0 to 81.0]). Our analysis was limited by the included studies' heterogeneity in viral load assessment and sample origination. CONCLUSIONS: Ag-RDTs detect most of the individuals infected with SARS-CoV-2, and almost all (>90%) when high viral loads are present. With viral load, as estimated by Ct-value, being the most influential factor on their sensitivity, they are especially useful to detect persons with high viral load who are most likely to transmit the virus. To further quantify the effects of other factors influencing test sensitivity, standardization of clinical accuracy studies and access to patient level Ct-values and duration of symptoms are needed.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , Point-of-Care Systems , Sensitivity and Specificity
3.
Diagnostic microbiology and infectious disease ; 2021.
Article in English | EuropePMC | ID: covidwho-1602617

ABSTRACT

One SARS-CoV-2-positive sample demonstrated impaired detection of the N1 target by RT-PCR using US CDC primer/probe sets. A three nucleotide deletion was discovered that overlaps the forward primer binding site. This finding underscores the importance of continued SARS-CoV-2 mutation surveillance and assessment of the impact on diagnostic test performance.

4.
PLoS One ; 16(7): e0255154, 2021.
Article in English | MEDLINE | ID: covidwho-1331999

ABSTRACT

BACKGROUND: COVID-19 has been reported in over 40million people globally with variable clinical outcomes. In this systematic review and meta-analysis, we assessed demographic, laboratory and clinical indicators as predictors for severe courses of COVID-19. METHODS: This systematic review was registered at PROSPERO under CRD42020177154. We systematically searched multiple databases (PubMed, Web of Science Core Collection, MedRvix and bioRvix) for publications from December 2019 to May 31st 2020. Random-effects meta-analyses were used to calculate pooled odds ratios and differences of medians between (1) patients admitted to ICU versus non-ICU patients and (2) patients who died versus those who survived. We adapted an existing Cochrane risk-of-bias assessment tool for outcome studies. RESULTS: Of 6,702 unique citations, we included 88 articles with 69,762 patients. There was concern for bias across all articles included. Age was strongly associated with mortality with a difference of medians (DoM) of 13.15 years (95% confidence interval (CI) 11.37 to 14.94) between those who died and those who survived. We found a clinically relevant difference between non-survivors and survivors for C-reactive protein (CRP; DoM 69.10 mg/L, CI 50.43 to 87.77), lactate dehydrogenase (LDH; DoM 189.49 U/L, CI 155.00 to 223.98), cardiac troponin I (cTnI; DoM 21.88 pg/mL, CI 9.78 to 33.99) and D-Dimer (DoM 1.29mg/L, CI 0.9 to 1.69). Furthermore, cerebrovascular disease was the co-morbidity most strongly associated with mortality (Odds Ratio 3.45, CI 2.42 to 4.91) and ICU admission (Odds Ratio 5.88, CI 2.35 to 14.73). DISCUSSION: This comprehensive meta-analysis found age, cerebrovascular disease, CRP, LDH and cTnI to be the most important risk-factors that predict severe COVID-19 outcomes and will inform clinical scores to support early decision-making.


Subject(s)
COVID-19/pathology , C-Reactive Protein/metabolism , COVID-19/metabolism , Cerebrovascular Disorders/metabolism , Cerebrovascular Disorders/virology , Fibrin Fibrinogen Degradation Products/metabolism , Humans , L-Lactate Dehydrogenase/metabolism , Troponin I/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL